Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations.

Identifieur interne : 001944 ( Main/Exploration ); précédent : 001943; suivant : 001945

Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations.

Auteurs : Haiyun Jin [États-Unis] ; Puja Goyal [États-Unis] ; Akshaya Kumar Das [Suisse] ; Michael Gaus [États-Unis] ; Markus Meuwly [Suisse] ; Qiang Cui [États-Unis]

Source :

RBID : pubmed:26624804

Descripteurs français

English descriptors

Abstract

We apply two recently developed computational methods, DFTB3 and VALBOND, to study copper oxidation/reduction processes in solution and protein. The properties of interest include the coordination structure of copper in different oxidation states in water or in a protein (plastocyanin) active site, the reduction potential of the copper ion in different environments, and the environmental response to copper oxidation. The DFTB3/MM and VALBOND simulation results are compared to DFT/MM simulations and experimental results whenever possible. For a copper ion in aqueous solution, DFTB3/MM results are generally close to B3LYP/MM with a medium basis, including both solvation structure and reduction potential for Cu(II); for Cu(I), however, DFTB3/MM finds a two-water coordination, similar to previous Born-Oppenheimer molecular dynamics simulations using BLYP and HSE, whereas B3LYP/MM leads to a tetrahedron coordination. For a tetraammonia copper complex in aqueous solution, VALBOND and DFTB3/MM are consistent in terms of both structural and dynamical properties of solvent near copper for both oxidation states. For copper reduction in plastocyanin, DFTB3/MM simulations capture the key properties of the active site, and the computed reduction potential and reorganization energy are in fair agreement with experiment, especially when the periodic boundary condition is used. Overall, the study supports the value of VALBOND and DFTB3(/MM) for the analysis of fundamental copper redox chemistry in water and protein, and the results also help highlight areas where further improvements in these methods are desirable.

DOI: 10.1021/acs.jpcb.5b09656
PubMed: 26624804
PubMed Central: PMC5705190


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations.</title>
<author>
<name sortKey="Jin, Haiyun" sort="Jin, Haiyun" uniqKey="Jin H" first="Haiyun" last="Jin">Haiyun Jin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goyal, Puja" sort="Goyal, Puja" uniqKey="Goyal P" first="Puja" last="Goyal">Puja Goyal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Das, Akshaya Kumar" sort="Das, Akshaya Kumar" uniqKey="Das A" first="Akshaya Kumar" last="Das">Akshaya Kumar Das</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaus, Michael" sort="Gaus, Michael" uniqKey="Gaus M" first="Michael" last="Gaus">Michael Gaus</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meuwly, Markus" sort="Meuwly, Markus" uniqKey="Meuwly M" first="Markus" last="Meuwly">Markus Meuwly</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Qiang" sort="Cui, Qiang" uniqKey="Cui Q" first="Qiang" last="Cui">Qiang Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26624804</idno>
<idno type="pmid">26624804</idno>
<idno type="doi">10.1021/acs.jpcb.5b09656</idno>
<idno type="pmc">PMC5705190</idno>
<idno type="wicri:Area/Main/Corpus">001A11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A11</idno>
<idno type="wicri:Area/Main/Curation">001A11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A11</idno>
<idno type="wicri:Area/Main/Exploration">001A11</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations.</title>
<author>
<name sortKey="Jin, Haiyun" sort="Jin, Haiyun" uniqKey="Jin H" first="Haiyun" last="Jin">Haiyun Jin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goyal, Puja" sort="Goyal, Puja" uniqKey="Goyal P" first="Puja" last="Goyal">Puja Goyal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Das, Akshaya Kumar" sort="Das, Akshaya Kumar" uniqKey="Das A" first="Akshaya Kumar" last="Das">Akshaya Kumar Das</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaus, Michael" sort="Gaus, Michael" uniqKey="Gaus M" first="Michael" last="Gaus">Michael Gaus</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meuwly, Markus" sort="Meuwly, Markus" uniqKey="Meuwly M" first="Markus" last="Meuwly">Markus Meuwly</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Qiang" sort="Cui, Qiang" uniqKey="Cui Q" first="Qiang" last="Cui">Qiang Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The journal of physical chemistry. B</title>
<idno type="eISSN">1520-5207</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalytic Domain (MeSH)</term>
<term>Copper (chemistry)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plastocyanin (chemistry)</term>
<term>Populus (chemistry)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cuivre (composition chimique)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Plastocyanine (composition chimique)</term>
<term>Populus (composition chimique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Simulation de dynamique moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Copper</term>
<term>Plant Proteins</term>
<term>Plastocyanin</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cuivre</term>
<term>Eau</term>
<term>Plastocyanine</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Molecular Dynamics Simulation</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaine catalytique</term>
<term>Oxydoréduction</term>
<term>Simulation de dynamique moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We apply two recently developed computational methods, DFTB3 and VALBOND, to study copper oxidation/reduction processes in solution and protein. The properties of interest include the coordination structure of copper in different oxidation states in water or in a protein (plastocyanin) active site, the reduction potential of the copper ion in different environments, and the environmental response to copper oxidation. The DFTB3/MM and VALBOND simulation results are compared to DFT/MM simulations and experimental results whenever possible. For a copper ion in aqueous solution, DFTB3/MM results are generally close to B3LYP/MM with a medium basis, including both solvation structure and reduction potential for Cu(II); for Cu(I), however, DFTB3/MM finds a two-water coordination, similar to previous Born-Oppenheimer molecular dynamics simulations using BLYP and HSE, whereas B3LYP/MM leads to a tetrahedron coordination. For a tetraammonia copper complex in aqueous solution, VALBOND and DFTB3/MM are consistent in terms of both structural and dynamical properties of solvent near copper for both oxidation states. For copper reduction in plastocyanin, DFTB3/MM simulations capture the key properties of the active site, and the computed reduction potential and reorganization energy are in fair agreement with experiment, especially when the periodic boundary condition is used. Overall, the study supports the value of VALBOND and DFTB3(/MM) for the analysis of fundamental copper redox chemistry in water and protein, and the results also help highlight areas where further improvements in these methods are desirable. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26624804</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>11</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5207</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>120</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>The journal of physical chemistry. B</Title>
<ISOAbbreviation>J Phys Chem B</ISOAbbreviation>
</Journal>
<ArticleTitle>Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations.</ArticleTitle>
<Pagination>
<MedlinePgn>1894-910</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.jpcb.5b09656</ELocationID>
<Abstract>
<AbstractText>We apply two recently developed computational methods, DFTB3 and VALBOND, to study copper oxidation/reduction processes in solution and protein. The properties of interest include the coordination structure of copper in different oxidation states in water or in a protein (plastocyanin) active site, the reduction potential of the copper ion in different environments, and the environmental response to copper oxidation. The DFTB3/MM and VALBOND simulation results are compared to DFT/MM simulations and experimental results whenever possible. For a copper ion in aqueous solution, DFTB3/MM results are generally close to B3LYP/MM with a medium basis, including both solvation structure and reduction potential for Cu(II); for Cu(I), however, DFTB3/MM finds a two-water coordination, similar to previous Born-Oppenheimer molecular dynamics simulations using BLYP and HSE, whereas B3LYP/MM leads to a tetrahedron coordination. For a tetraammonia copper complex in aqueous solution, VALBOND and DFTB3/MM are consistent in terms of both structural and dynamical properties of solvent near copper for both oxidation states. For copper reduction in plastocyanin, DFTB3/MM simulations capture the key properties of the active site, and the computed reduction potential and reorganization energy are in fair agreement with experiment, especially when the periodic boundary condition is used. Overall, the study supports the value of VALBOND and DFTB3(/MM) for the analysis of fundamental copper redox chemistry in water and protein, and the results also help highlight areas where further improvements in these methods are desirable. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Haiyun</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goyal</LastName>
<ForeName>Puja</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Das</LastName>
<ForeName>Akshaya Kumar</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaus</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meuwly</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM106443</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-GM106443</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Phys Chem B</MedlineTA>
<NlmUniqueID>101157530</NlmUniqueID>
<ISSNLinking>1520-5207</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-09-9</RegistryNumber>
<NameOfSubstance UI="D010970">Plastocyanin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010970" MajorTopicYN="N">Plastocyanin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26624804</ArticleId>
<ArticleId IdType="doi">10.1021/acs.jpcb.5b09656</ArticleId>
<ArticleId IdType="pmc">PMC5705190</ArticleId>
<ArticleId IdType="mid">NIHMS921403</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem B. 2005 Sep 22;109(37):17715-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16853267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2012 Jan 19;116(2):870-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22107449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Mar 31;126(12):3928-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15038747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2015 Feb 28;142(8):084310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25725734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2005 May 12;109(18):9082-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16852081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2006 Jun 14;124(22):224501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16784292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Feb 2;291(5505):856-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1998 Dec;7(12):2659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9865961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2012 Sep 13;116(36):9131-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22894819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 1996 Oct 28;77(18):3865-3868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10062328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2006 Apr 6;110(13):6458-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16570942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2015 Aug 28;143(8):084123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26328834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2013 Sep 10;9(9):3965-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26592392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2007 May 21;126(19):194302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17523799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2012 Feb 14;8(2):460-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26596596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2013 Jun 6;117(22):4591-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Jul 30;30(10):1545-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2008 Nov;13(8):1205-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Nov 20;192(2):361-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3560221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Oct 13;126(40):12786-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15469268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2012 Oct 9;8(10):3526-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26593000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2001 Nov 28;123(47):11728-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11716730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2006 Mar 28;124(12):124106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16599661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inorg Chem. 2005 Mar 21;44(6):1922-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15762718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Faraday Discuss. 2000;(116):205-20; discussion 257-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11197479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2014;10(1):298-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25045338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2007 Jul 5;111(26):5703-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2005 Jul 1;123(1):014905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16035867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2014 Jan 5;35(1):18-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2005 Apr;6(4):738-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15747387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2009 Mar 10;5(3):530-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26610220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2013 Jan 8;9(1):338-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26589037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2004 Feb;104(2):651-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2013 Feb 21;117(7):2005-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23347181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2013 Sep 10;9(9):4165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26592407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9944570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Oct 10;134(40):16701-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22985400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2009 Jan 21;11(3):508-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19283268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2015 Jan 22;119(3):1152-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25386900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2011 Feb;3(2):140-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21258692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2010 Sep 28;12(36):10801-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20657900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2008 Sep 25;112(38):9104-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18763748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Model. 2007 Dec;13(12):1173-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17828561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):33-8, 27-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1976 May 15;103(2):227-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">985660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 1998 Apr 30;102(18):3586-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2001 Nov 28;123(47):11623-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11716717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Apr 2;520(7545):78-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25832405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Apr 11;129(14):4423-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17367139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2015 Sep 8;11(9):4205-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26575916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2005 Aug 7;7(15):2874-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16189606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):823-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Jun 30;126(25):8010-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15212551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Apr 30;125(17):5025-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12708852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9900728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Aug 14;51(32):6289-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22708607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Nov 26;130(47):16065-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2009;48(7):1198-229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19173328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2003 Dec;24(16):1963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14531050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2012 Oct 18;116(41):12522-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22985044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2010 Oct 14;114(40):10857-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20849102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inorg Chem. 2008 May 19;47(10):4126-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18426203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2006 Feb 14;124(6):64509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16483222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Chem. 1999 Apr 5;78(1-2):89-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17030305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2014 Sep 25;118(38):11007-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25166899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phys Chem. 2008;59:573-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18393679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2009 Aug 27;113(34):9559-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19655778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Jul 17;112(28):8387-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18540669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemphyschem. 2003 Sep 15;4(9):931-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2014 Jul 8;10(7):2690-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26586504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2013 May 14;9(5):2313-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26583724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Chem Acc. 2012 Mar;131:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27293378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2012 Apr 10;7(4):931-948</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23204947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2012 Oct;115:119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22658756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2007 Jul 5;111(26):5622-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428041</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Jin, Haiyun" sort="Jin, Haiyun" uniqKey="Jin H" first="Haiyun" last="Jin">Haiyun Jin</name>
</noRegion>
<name sortKey="Cui, Qiang" sort="Cui, Qiang" uniqKey="Cui Q" first="Qiang" last="Cui">Qiang Cui</name>
<name sortKey="Gaus, Michael" sort="Gaus, Michael" uniqKey="Gaus M" first="Michael" last="Gaus">Michael Gaus</name>
<name sortKey="Goyal, Puja" sort="Goyal, Puja" uniqKey="Goyal P" first="Puja" last="Goyal">Puja Goyal</name>
</country>
<country name="Suisse">
<noRegion>
<name sortKey="Das, Akshaya Kumar" sort="Das, Akshaya Kumar" uniqKey="Das A" first="Akshaya Kumar" last="Das">Akshaya Kumar Das</name>
</noRegion>
<name sortKey="Meuwly, Markus" sort="Meuwly, Markus" uniqKey="Meuwly M" first="Markus" last="Meuwly">Markus Meuwly</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001944 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001944 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26624804
   |texte=   Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26624804" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020